COLD ATOMS GROUP
TOULOUSE
COLD ATOMS GROUP
TOULOUSE
We study an experimental setup in which a quantum probe, provided by a quasi-monomode guided atom laser, interacts with a static localized attractive potential whose characteristic parameters are tunable. In this system, classical mechanics predicts a transition from regular to chaotic behavior as a result of the coupling between the different degrees of freedom. Our experimental results display a clear signature of this transition. On the basis of extensive numerical simulations, we discuss the quantum versus classical physics predictions in this context. This system opens new possibilities for investigating quantum scattering, provides a new testing ground for classical and quantum chaos and enables to revisit the quantum-classical correspondence.
G. L. Gattobigio et al. Phys. Rev. Lett. 107, 254104 (2011)
We report on the experimental study of a Bragg reflector for guided, propagating Bose-Einstein condensates. A one-dimensional attractive optical lattice of finite length created by red-detuned laser beams selectively reflects some velocity components of the incident matter wave packet. We find quantitative agreement between the experimental data and one-dimensional numerical simulations and show that the Gaussian envelope of the optical lattice has a major influence on the properties of the reflector. In particular, it gives rise to multiple reflections of the wave packet between two symmetric locations where Bragg reflection occurs. Our results are a further step towards integrated atom-optics setups for quasi-cw matter waves.
C. M. Fabre et al., Phys. Rev. Lett. 107, 230401 (2011)
We report the transport of ultracold atoms with optical tweezers in the non-adiabatic
regime, i.e. on a time scale on the order of the oscillation period. We have found a set of discrete transport durations for which the transport is not accompanied by any excitation of the centre of mass of the cloud after the transport. We show that the residual amplitude of oscillation of the dipole mode is given by the Fourier transform of the velocity profile imposed to the trap for the transport. This formalism leads to a simple interpretation of our data and simple methods for optimizing trapped particles displacement in the non-adiabatic regime.
We report on a far above saturation absorption imaging technique to investigate the characteristics of dense packets of ultracold atoms. The transparency of the cloud is controlled by the incident light intensity as a result of the non-linear response of the
atoms to the probe beam. We detail our experimental procedure to calibrate the imaging system for reliable quantitative measurements, and demonstrate the use of this technique to extract the profile and its spatial extent of an optically thick atomic cloud.
G. Reinaudi et al., Opt. Lett. 32, 3143 (2007).
A. Couvert et al., Europhys. Lett. 83, 13001 (2008).
We report on our recent progress in the manipulation and cooling of a magnetically guided, high-flux beam of 87Rb atoms. Typically, 7 x 10^9 atoms per second propagate in a magnetic guide providing a transverse gradient of 800 G/cm, with a temperature (550 microK, at an initial velocity of 90 cm/s. The atoms are subsequently slowed down to 60 cm/s using an upward slope. The relatively high collision rate (5 s^−1) allows us to start forced evaporative cooling of the beam, leading to a reduction of the beam temperature by a factor of 4, and a tenfold increase of the on-axis phase-space density.
T. Lahaye et al. Phys. Rev. A. 72, 033411 (2005).
Previous contributions (performed at ENS Paris)
We have experimentally demonstrated a high level of control of the mode populations of guided-atom lasers (GALs) by showing that the entropies per particle of an optically GAL and the one of the trapped Bose- Einstein condensate (BEC) from which it has been produced are the same. The BEC is prepared in a crossed beam optical dipole trap. We have achieved isentropic outcoupling for both magnetic and optical schemes. We can prepare GAL in a nearly pure monomode regime (85% in the ground state). Furthermore, optical outcoupling enables the production of spinor guided-atom lasers and opens the possibility to tailor their polarization.
G. L. Gattogigio et al., Phys. Rev. A 80, 041605(R) (2009)
We report the achievement of an optically guided and quasi-monomode atom laser, in all spin projection states (mF = −1, 0 and +1) of F = 1 in rubidium 87. The atom laser source is a Bose-Einstein condensate (BEC) in a crossed dipole trap, purified to any one spin projection state by a spin-distillation process applied during the evaporation to BEC. The atom laser is outcoupled by an inhomogenous magnetic field, applied along the waveguide axis. The mean excitation number in the transverse modes is ⟨n⟩ = 0.65 ± 0.05 for mF = 0 and ⟨n⟩ = 0.8 ± 0.3 for the low-field seeker mF = −1. Using a simple thermodynamical model, we infer from our data the population in each excited mode.
A. Couvert et al., Europhys. Lett. 83, 50001 (2008).
We describe the realization of a magnetically guided beam of cold rubidium atoms, with a flux of 7 10^9 atoms/s, a temperature of 400 microK, and a mean velocity of 1 m/s. The rate of elastic collisions within the beam is sufficient to ensure thermalization. We show that the evaporation induced by a radio-frequency wave leads to appreciable cooling and an increase in the phase space density. We discuss the perspectives to reach the quantum degenerate regime using evaporative cooling.
T. Lahaye et al. Phys. Rev. Lett. 93, 093003 (2004).
We demonstrate transport and evaporative cooling of several atomic clouds in a chain of magnetic Ioffe- Pritchard traps moving at a low speed (1 m/s). The trapping scheme relies on the use of a magnetic guide for transverse confinement and of magnets fixed on a conveyor belt for longitudinal trapping. This experiment introduces a different approach for parallelizing the production of Bose-Einstein condensates as well as for the realization of a continuous atom laser.
T. Lahaye et al. Phys. Rev. A. 74, 033622 (2006).
A fast packet of cold atoms is coupled into a magnetic guide and subsequently slowed down by reflection on a magnetic potential barrier (‘mirror’) moving along the guide. A detailed characterization of the resulting decelerated packet is performed. We show also how this technique can be used to generate a continuous and intense flux of slow, magnetically guided atoms.
G. Reinaudi et al., Eur. Phys. J. D 40, 405 (2006).
We report on the implementation of evaporative cooling of a magnetically guided beam by adsorption on a ceramic surface. We use a transverse magnetic field to shift locally the beam towards the surface, where atoms are selectively evaporated. With a 5-mm-long ceramic piece, we gain a factor of 1.5±0.2 on the phase-space density. Our results are consistent with a 100% efficiency of this evaporation process. The flexible implemen- tation that we have demonstrated, combined with the very local action of the evaporation zone, makes this method particularly suited for the evaporative cooling of a beam.
G. Reinaudi et al. Phys. Rev. A. 73, 035402 (2006).
We demonstrate experimentally the continuous and pulsed loading of a slow and cold atomic beam into a magnetic guide. The slow beam is produced using a vapor loaded laser trap, which ensures two- dimensional magneto-optical trapping, as well as cooling by a moving molasses along the third direction. It provides a continuous flux larger than 109 atoms/s with an adjustable mean velocity ranging from 0.3 to 3 m/s, and with longitudinal and transverse temperatures smaller than 100 μK. Up to 3 × 108 atoms/s are injected into the magnetic guide and subsequently guided over a distance of 40 cm.
P. Cren et al., Eur. Phys. J. D. 20, 107 (2002).
We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire- wound setups, no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold 87Rb atoms. With typical fluxes of (1–5) ×10^10 atoms/s at 30 m/ s , our apparatus efficiently loads a large magneto-optical trap with more than 10^10 atoms in 1 s, which is an ideal starting point for degenerate quantum gas experiments.
P. Cheiney et al., Rev. Sci. Instrument. 82, 063115 (2011).
We study experimentally and theoretically a beam splitter setup for guided atomic matter waves. The matter wave is a guided atom laser that can be tuned from quasi-monomode to a regime where many transverse modes are populated, and propagates in a horizontal dipole beam until it crosses another horizontal beam at 45$^{\rm o}$. We show that depending on the parameters of this $X$ configuration, the atoms can all end up in one of the two beams (the system behaves as a perfect guide switch), or be split between the four available channels (the system behaves as a beam splitter). The splitting regime results from a chaotic scattering dynamics. The existence of these different regimes turns out to be robust against small variations of the parameters of the system. From numerical studies, we also propose a scheme that provides a robust and controlled beam splitter in two channels only.
G.L. Gattobigio et al. Phys. Rev. Lett. 109, 030403 (2012).
We experimentally study the scattering of guided matter waves on an amplitude-modulated optical lattice. We observe different types of frequency-dependent dips in the asymptotic output density distribution. Their positions are compared quantitatively with numerical simulations. A semiclassical model that combines local Floquet-Bloch bands analysis and Landau-Zener transitions provides a simple picture of the observed phenomena in terms of elementary Floquet photon absorption-emission processes and envelope induced reflections. Finally, we propose and demonstrate the use of this technique with a bichromatic modulation to design a tunable sub-recoil velocity filter.
P. Cheiney et al.Phys. Rev. A 87, 013623 (2013)
We experimentally demonstrate the trapping of a propagating Bose-Einstein Condensate in a Bragg cavity produced by an attractive optical lattice with a smooth envelope. As a consequence of the envelope, the band gaps become position-dependent and act as mirrors of finite and velocity-dependent reflectivity. We directly observe both the oscillations of the wave packet bouncing in the cavity provided by these spatial gaps and the tunneling out for narrow classes of velocity. Synchronization of different classes of velocity can be achieved by proper shaping of the envelope. This technique can generate single or multiple tunnel barriers for matter waves with a tunable transmission probability, equivalent to a standard barrier of submicron size.
P. Cheiney et al. EPL 103, 50006 (2013).
The new setup is based on a 2D MOT separated from the science chamber by two successive stages of differential vacuum chambers. It has been optimized for a good optical access, a high optical resolution and a very high stability and reproductibility. The BEC will be produced using an hybrid-trap. The laser system involves only one locking system made by phase modulation, all other frequencies are generated using Acousto-Optic Modulator or Electro-Optic Modulator.
Bose-Einstein condentensate of rubidium atoms in the F=1, m=-1 state are obtained using an hybrid trap that combines a quadrupole with a maximum gradient of 300 G/cm and a crossed dipole trap generated by a 5W monomode fibered laser. The evaporation in the magnetic trap is performed using microwaves (at 6.8 GHz). Pure BEC with more than 100 000 atoms are obtained every 30 seconds.